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Abstract— Chorems are schematic visual constructs designed
to synthesize and communicate the spatial structure of territories.
While traditionally static and manually designed, recent
developments have enabled their animation and partial automation
using geographic data. However, their integration with artificial
intelligence for dynamic forecasting and exploratory analysis
remains underexplored. In this paper, we introduce the concept
of intelligent predictive chorems, AI-driven representations that not
only reflect current spatial patterns but also anticipate their future
evolution. Our methodology combines deep learning for spatio-
temporal forecasting with spatial clustering and generalization
techniques to construct interpretable geovisual summaries. These
predictive chorems are generated automatically and displayed over
simplified territorial backdrops, enabling both expert users and
non-specialists to grasp complex trends in space and time. Applied
to urban mobility data, our approach demonstrates how predictive
chorems can serve as powerful tools for scenario exploration,
planning, and real-time decision support. The results highlight their
potential to bridge the gap between data-driven forecasts and
human-centered spatial reasoning—positioning this approach as a
promising bridge toward a new generation of intelligent geovisual
tools.

Keywords-component: Intelligent chorems, Deep Learning,
Intelligent geovisualization, Automated Cartography, Geographic
prediction.

L. INTRODUCTION

In today’s data-rich environment, the continuous
production of spatio-temporal information from sensors, open
data platforms, and urban mobility systems presents both an
opportunity and a challenge for understanding territorial
dynamics [21, 4, 3]. The mere accumulation of raw data is
insufficient; there is a pressing need for intelligent methods
capable of synthesizing and revealing trends, explaining spatial
phenomena, and most importantly, forecasting their future
evolution [33, 7]. Traditional cartographic approaches,
especially those involving direct projection of temporal data,
often fall short in conveying meaningful insights, particularly
when dealing with complex or rapidly changing environments.
This has given rise to the field of predictive geovisualization, at
the crossroads of artificial intelligence using deep learning,
spatial analysis, and schematic cartography [30].

Among various visual synthesis tools, chorems —
schematic constructs introduced by Roger Brunet in his seminal
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work — offer a compelling way to represent the structural
organization of space [11]. Originally designed for static and
manual use, chorems are increasingly being explored for
dynamic applications, aided by automation, animation, and
spatial analysis technologies [8, 9, 16]. However, their
integration with predictive intelligent frameworks remains
limited. Bridging chorems with automated forecasting
techniques represents a novel and timely contribution toward
creating intelligent, interpretable geovisual tools that facilitate
spatial decision-making.

This study introduces a new approach for generating
predictive chorematic maps using deep learning models to
model and forecast complex spatio-temporal processes. The
proposed methodology combines temporal prediction with
spatial clustering and cartographic generalization [10],
producing visual summaries in the form of chorems that
represent not only current spatial patterns but also their
anticipated evolution.

Applied to urban mobility data this method captures and
forecasts flows over time, enabling a clearer understanding of
both regular and emergent spatial dynamics. To the best of our
knowledge, this represents the first attempt to integrate deep
learning-based spatio-temporal forecasting with chorem-based
geovisualization into a unified, automated framework. The goal
is twofold: to provide intuitive visual representations, and to
offer actionable insights for planners, analysts, and decision-
makers through a data-driven, yet human-interpretable,
mapping system.

The remainder of this paper is structured as follows. We
first review related work in geovisualization, schematic
cartography, and Al-based forecasting. We then present the
core components of our methodology, followed by an
implementation and case study. The paper concludes with a
discussion of preliminary results, limitations, and future
research directions.

II. BACKGROUND AND STATE OF THE ART

In this section, we briefly discuss related works required to
understand our research.

A. Chorems

The concept of the chorem was introduced in the 1980s by
French geographer Roger Brunet, as part of his work within the
RECLUS research group (Réseau d’étude des changements



dans les localisations et les unités spatiales). In his foundational
work “La composition des modéles dans [’espace” [11], he
defines chorems as schematic representations of territory,
designed to highlight the underlying spatial structures.

The word “chorem” derives from the Greek yawpa (chora,
meaning space, territory, or place and the suffix -nua (-éma),
which denotes a conceptual object — as in the word
“problem”. A chorem can thus be understood as a minimal unit
of spatial structuring, a kind of molecule of space intended to
model territorial forms and dynamics. Originally designed as
pedagogical and analytical tools in geography, chorems have
gradually been used to formalize complex spatial models.
They offer schematic representations of structures such as
networks, polarizations, gradients, and centralities [15]. By
reducing territorial complexity into simplified graphical forms,
chorems facilitate the comparison of territories that exhibit
recurring  spatial  structures—an  approach  already
demonstrated in Roger Brunet’s foundational work [11, 15].
Brunet proposed a classification of chorems into seven
categories of fundamental spatial structures — such as
polarization, networking, gradients, centrality, and hierarchy
— each represented by a standardized graphic form (point,
line, circle, arrow, network, etc.). These visual forms are
associated with territorial meanings, creating a visual grammar
that supports the modeling, interpretation, and comparison of
spatial systems. Chorems have been widely used in atlases,
regional geography studies, territorial planning strategies, and
comparative analyses [12, 20].

Thanks to their capacity for simplification, chorems have
also become an effective means of visually translating
complex geographic concepts. They provide a synthetic
graphic language that makes spatial information accessible to
a wide range of audiences [26]. This explanatory potential has
made them a valuable tool for constructing operational spatial
typologies, particularly in the fields of urban planning and
territorial development [13].

Over the years, the use of chorems has expanded into various
fields of application. In thematic cartography, chorems have
enabled the schematization of territorial issues at multiple
scales [11, 13, 28]. They have also been incorporated into
comparative territorial analyses, where they serve to identify
and contrast similar spatial logics [6]. More recently, their
potential has been explored in the fields of geomarketing and
territorial foresight, where they function as strategic visual
tools for planning and decision-making support [6].

In recent years, much work has been carried out about
chorems as visual summaries of geographic databases
providing a novel definition and classification of chorems, in
order both to standardize the construction and use of chorems,
and to provide a useful framework computer system [17]. In
[16] the authors enhance the role that a chorem map may play
in geographic domains, by extending the semantics associated
with it through a more expressive visual notation.

In particular, by adopting the revisited Schneiderman’s
mantra, namely “Overview, zoom and filter, details on
demand” [16], each allow users to acquire information about a
single phenomenon by accessing data characterizing it from
the underlying database. Cherni et al. [ 14] have proposed some
methodological aspects to automatically extract chorems. In
addition, [29] includes chorems as possible methods to
represent visually geographic knowledge. Visual summaries
based on chorems can be considered as a specific type of
thematic map with a higher degree of generalization and
abstraction. As previously told, generalization is a
cartographic process but not the only existing cartographic
process [32].

More recently, [8, 9] involve visualizing sensor data on a
map with dynamic updates, often using interactive elements.
These visualizations can highlight spatial patterns, temporal
trends, and anomalies, and they are used in various
applications like smart cities, environmental monitoring, and
disaster response.

B. Visual Analytics and Predictive Geovisualization

Visual Analytics is an interdisciplinary field situated at the
intersection of interactive visualization, data analysis, and
artificial intelligence. Its primary goal is to support human
analytical reasoning through dynamic, interpretable, and
exploratory [1,24]. In spatial contexts, Visual Analytics
enables analysts to detect trends, anomalies, and spatial
structures within large, complex, and multivariate datasets.

Geovisualization aims at visually representing spatial
phenomena for purposes of exploration, analysis, or
communication. It becomes intelligent when it incorporates
techniques from artificial intelligence, machine learning, or
automated data stream processing [27]. These technologies
enable the automatic detection of spatial and temporal patterns
[22], the adaptive adjustment of cartographic content to user
profiles or contexts [2], and enhanced human-computer
interaction through the partial automation of analytical tasks.
The integration of predictive models such as, neural networks,
time series forecasting, or spatio-temporal models, has given
rise to predictive visualization, which allows for the
cartographic display of future projections (e.g., traffic,
pollution, urban dynamics), the combination of forecasts and
uncertainty in interactive displays [37] and support for real-
time decision-making in contexts such as smart cities or crisis
management. The convergence of artificial intelligence,
visualization, and GIS paves the way for a new generation of
intelligent and predictive geovisualization tools, which
leverage deep learning models (e.g., LSTM, GNN) to
anticipate spatial dynamics [39], generate adaptive and self-
explanatory smart maps, and empower decision-makers with
proactive, interpretable, and dynamic spatial analysis
environments. By combining exploratory analysis, predictive
modeling, and interactive interfaces, visual analytics applied
to geography offers powerful perspectives for steering
complex territorial systems and facilitating insight-driven



decisions [35, 31]. In our work, we build on this philosophy by
proposing a geovisual framework based on predictive visual
summaries, aiming to make forecasting results more
accessible, interpretable, and actionable for decision-makers
and urban planners.

C. Research overview

Despite significant advances in spatio-temporal modeling
and geovisualization, existing approaches still face important
limitations when it comes to interpreting and communicating
complex spatial dynamics. Traditional GIS-based tools and
data-driven dashboards often rely on dense, map-heavy
visualizations that are not always readable by non-experts and
tend to lack semantic abstraction. Moreover, while deep
learning models have improved the accuracy of spatio-
temporal forecasting, their integration into visual reasoning
workflows remains limited. These models are frequently seen
as black boxes, providing little intuitive or visual feedback to
support human decision-making.

In the field of cartographic schematization, chorems have
proven effective for representing territorial structures through
a synthetic and interpretable visual grammar. However, they
have rarely been combined with real-time data or Al-based
forecasting, remaining mostly static and manually designed.
Consequently, there is a lack of approaches that can both
predict spatial dynamics and represent them through abstract
yet intelligible forms, especially for use in planning, crisis
management, or urban foresight.

In this paper, we propose a novel framework for Predictive
Chorem-Based Geovisualization, which aims to bridge this
gap. By combining LSTM-based deep learning [23] for spatio-
temporal forecasting with chorematic schematization
techniques, we introduce a method that can automatically
generate interpretable visual summaries of future spatial
patterns. This contribution positions itself at the intersection of
Al-driven prediction, geographic abstraction, and interactive
geovisual tools, offering a new pathway for human-centered
spatial intelligence.

III. METHODOLOGY : CHOREMS AND ARTIFICIALS8
INTELLIGENCE — TOWARDS A NEW PREDICTIVE
GEOVISUALIZATION

In this section, we present how the challenges outlined
above are addressed through our proposed methodology. Our
approach is structured as a multi-step pipeline designed to
transform raw spatio-temporal data streams into interpretable
and  predictive  chorem-based  visualizations. = The
methodological process unfolds as follows:

! https://opendata.paris.fr/pages/home/

4. Case Study: Urban Mobility Forecasting

We applied our predictive geovisualization pipeline to a
real-world dataset of bicycle flow measurements collected
across the city of Paris'. The dataset spans a full 12-month
period, from June 2023 to May 2024, and was obtained from a
network of urban sensors managed by the city’s open data
platform. These sensors, installed at various locations across
the Paris metropolitan area, continuously record the number of
bicycles passing by at hourly intervals (Figure 2).
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Figure 1. Traditional dot map of the current state of bicycle flows in Paris

B. Overview of the Architecture

The proposed approach architecture is organized as a
modular processing pipeline designed to transform raw spatio-
temporal data into interpretable predictive chorems. As
illustrated in the global workflow diagram (Figure 2).
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Figure 2. The proposed approach structure.

The pipeline is composed of five core stages:



(1) Data acquisition and preprocessing, where spatio-
temporal data from urban sensors (e.g., bicycle
counters, weather APIs) are collected, cleaned, and
structured;

(2) Forecasting future mobility flows at an hourly
resolution based on counting data collected from
urban sensors, using Long Short-Term Memory
(LSTM) neural networks [27];

(3) Clustering, where unsupervised algorithms K-
Means2 [34] and DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) [18], are
applied to group sensors with similar behavioral or
spatial characteristics;

(4) Generalization, in which territorial structures are
abstracted and simplified through geometric and
semantic generalization; and finally,

(5) Predictive Chorem Generation, where these
stylized patterns are encoded into visual elements
based on chorematic principles to support intuitive
geographic interpretation and decision-making.

C. Spatio-Temporal Forecasting with LSTM

To anticipate future patterns of urban bicycle mobility, we
implemented a Long Short-Term Memory (LSTM) neural
network tailored for spatio-temporal sequence forecasting. The
forecasting pipeline begins with the preprocessing of time
series data collected from urban counting stations. Daily counts
are aggregated, missing values interpolated, and all features
standardized. Temporal metadata, such as the day of the week,
holidays, and season indicators, are encoded and concatenated
as auxiliary inputs.

The architecture of the model consists of one or more
stacked LSTM layers, followed by a fully connected dense
output layer. Each input sequence corresponds to a sliding
window of historical observations, typically spanning seven
consecutive days (seq_length = 7), which are used to
predict the value on the eighth day. In its current configuration,
the model performs short-term next-step prediction, producing
a single output point for each input window (Figure 3).
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Figure 3. LSTM-based spatio-temporal forecasting pipeline.

This strategy emphasizes immediate trend detection rather
than long-term forecasting. Extending the system to multi-step
forecasting (e.g., for predicting bicycle flows over a full week
or month) remains an important direction for future work.

To ensure robust generalization, we applied time-aware
cross-validation strategies, such as training on several months
and testing on unseen time intervals. The model’s accuracy is
assessed using evaluation metrics including Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE). Model
hyperparameters, such as the number of layers, hidden units,
learning rate, and dropout rate, are optimized through grid
search, and early stopping is employed to prevent overfitting.

The LSTM outputs are then forwarded to the clustering
module, where predicted flow values are spatially grouped and
transformed into symbolic structures via chorematic
abstraction. This enables the synthesis of predictive maps that
not only anticipate future mobility intensities but also encode
them in an interpretable and spatially structured way.

D. Spatial Generalization and Chorem Generation

Once the spatio-temporal clusters are defined, we proceed
to spatial generalization in order to produce stylized chorem-
like regions. This involves several geometric processing steps:

First, a densification step is applied, using small jitter or
random displacement to avoid perfect overlaps of clustered
points. Then, buffer zones are created around each group of
sensors to approximate the spatial influence of each cluster.
These buffers are merged using topological union operations to
generate contiguous, interpretable regions.

To construct smooth and coherent outlines, we apply Alpha
Shape algorithms [19] to extract non-convex hulls around
grouped points, followed by geometric simplification to reduce
visual noise while preserving spatial structure. The result is a
set of chorematic zones — symbolic areas that reflect the spatial
organization of predicted flows.

Finally, we enrich each zone with directional arrows whose
orientation and thickness encode the predicted flow direction
and intensity. These visual elements are grounded in chorem
semiotics and enable a schematic but meaningful depiction of
territorial dynamics.

IV. PRELIMINARY RESULTS AND DISCUSSION

This section presents the preliminary results of our
proposed  predictive  chorem-based  geovisualization
framework. The analysis focuses on the effectiveness of
LSTM-based forecasting, the spatial clustering outputs, and the
visual synthesis of predictive chorems.

We first trained the LSTM model on 80% of the available
data, covering 12 months of hourly bike traffic collected from
urban sensors in Paris. The remaining 20% was used for testing.
The model successfully captured temporal trends, particularly
weekday/weekend variations and seasonal fluctuations. The
predicted values were then classified into three traffic flow
levels (low, medium, high) and aggregated by spatial clusters
obtained using DBSCAN and K-Means algorithms.

From a qualitative standpoint, the generated maps
highlighted recurrent spatial structures such as radial
centralities and flow corridors. These features were more
difficult to interpret in dense heatmaps. However, several
limitations remain: the precision of the predictions depends
strongly on the temporal granularity of the training data, and the



current visuals lack real-time interactivity or explicit
uncertainty representation. The performance of the LSTM
model on the test set is in (Table 1).

TABLE L THE PERFORMANCE OF THE LSTM MODEL
Metrics Values
RMSE 12.4
MAE 8.7
MAPE 11.3%
Accuracy (Predicted class) | 84.6%

To illustrate the outcomes of our predictive pipeline, we
developed a chorem-based predictive map of bicycle flows in
Paris (Figure 4).
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Figure 4. The predictive chorematic map of bicycle flows in Paris

This geovisualization integrates three types of chorems,
each tailored for practical use in urban analysis and territorial
planning:

e  Geographic chorems, depicted through points, lines,
and polygons, represent the spatial structure of the
city and the location of counting stations;

e Phenomenological chorems, in the form of colored
zoning areas and directional arrows, convey the
intensity and dominant direction of predicted bicycle
flows;

e Annotation chorems highlight strategic zones,
anomalies, or noteworthy patterns revealed through
data analysis.

Based on the predicted bicycle flow values, counting
stations were classified into three categories (low, medium, and
high intensity). These categories were then spatialized into
zones that abstract the complexity of urban space and reveal
structural patterns within the cycling network. Arrows placed
at the centroid of each zone indicate the dominant flow
direction and relative intensity, while the size of the blue circles
reflects the density of counters in each area.

Compared to a traditional dot map (Figure 1), this chorem-
based representation offers several major advantages. It
simplifies interpretation by aggregating individual stations into
coherent zones, highlights strong and weak spatial polarities,

and structures the map according to functional logic. This
schematic approach enables rapid identification of high-flow
corridors and areas where infrastructure adjustments may be
necessary.

From a semiological standpoint, the map design draws on
the principles of graphic semiology formulated by [5] using
color, size, shape, and orientation to encode variables such as
flow intensity, direction, and temporal dynamics. This
methodological choice ensures a scalable, interpretable, and
synthesized representation of complex spatio-temporal
phenomena — moving beyond traditional descriptive mapping.

Our approach stands apart from conventional
representations like heatmaps [38], glyph-based maps [25] or
vector-based flow diagrams [36] which often produce dense,
hard-to-read visuals that hinder structural understanding. In
contrast, predictive chorems provide a schematic and
generalized perspective, focused on dominant spatial structures
such as centralities, gradients, and polarizations, thus
supporting comparative spatial analysis.

When combined with time-series forecasting models such
as LSTMs, chorems become an effective tool for visual
forecasting, offering actionable insights for urban planners and
decision-makers in dynamic urban contexts. These preliminary
results underline the strong potential of predictive chorems as a
synthetic, intelligible, and decision-oriented geovisualization
method for modeling urban mobility patterns.

V. CONCLUSION AND PERSPECTIVES

This work introduces an innovative approach to predictive
geovisualization by combining deep learning techniques with
spatial abstraction through predictive chorems. By integrating
spatio-temporal forecasting using LSTM neural networks, data
clustering, and schematic synthesis, we demonstrated how raw
data from urban sensors can be transformed into intelligible and
structured maps that support spatial reasoning and strategic
planning.

While promising, the current results remain preliminary.
Future improvements will focus on enhancing the predictive
accuracy of the models, enriching the input data with contextual
variables (such as weather or calendar data), and increasing
both the readability and interactivity of the generated maps.
These developments are crucial to reinforce the operational
relevance of predictive chorems in real-world decision-making
scenarios.

The integration of more advanced Al models, such as
spatio-temporal transformers or graph neural networks
(GNNs), presents another promising avenue to improve both
the accuracy of forecasts and the expressiveness of spatial
representations.

In summary, this research lays the groundwork for a new
generation of predictive, structured, and user-centered
geovisualization at the intersection of artificial intelligence,
cartography, and decision support.

REFERENCES

[1] 1 A. Ain, AR Zamir, S. Savarese, A. Saxena,
Structural-RNN: “Deep Learning on Spatio-Temporal Graphs”,



[16]

[17]

Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp-5308-5317.
https://doi.org/10.1109/CVPR.2016.574.

G. Andrienko, N.Andrienko, “ Exploratory Analysis of Spatial and
Temporal Data: A Systematic Approach”, Berlin: Springer-Verlag,
2006, https://doi.org/10.1007/3-540-31190-4.

N. Andrienko, G. Andrienko, “ Visual analytics of movement: An
overview of methods”, tools and procedures, 2013, Information
visualization, vol. 12(1),pp. 3-24.

M. Batty, K. W. ,F. Axhausen, Giannotti , A. Pozdnoukhov,A.
Bazzani, M. Wachowicz, Y. Portugali, “ Smart cities of the future”,
The European Physical Journal Special Topics, 2014, vol. 214,
pp-481-518.

J. Bertin, “ Semiology of Graphics: Diagrams, Networks”, Maps.
Madison: University of Wisconsin Press, 1983, Original work
published in 1967.

P. Bonnin, J.P. Cheylan, J, “ Les chorémes, un outil d’analyse
spatiale pour la comparaison de territoires ”, In S. Lardon, P. Maurel,
& S. Piveteau (Eds.), La modélisation graphique des structures
spatiales : les chorémes, 2002, pp. 95-110, Clermont-Ferrand :
INRA SAD.

Z. Bouattou, H. Belbachir, R. Laurini, “Automatic generation of an
interactive, real time, web-based maps from sensor-based
geographic databases”, In 22nd International Conference on
Distributed Multimedia Systems, 2016, November, pp. 98-104.

Z. Bouattou, R. Laurini, H. Belbachir, “Animated chorem-based
summaries of geographic data streams from sensors in real time”,
Journal of Visual Languages & Computing, 2017, vol. 41, pp.54-
69.

Z. Bouattou,H. Belbachir, R. Laurini, R. “ Multi-agent system
approach for improved real-time visual summaries of geographical
data streams, International Journal of Intelligent Systems
Technologies and Applications, 2018, 17(3), pp. 255-271.

K.E. Brassel, R. Weibel, “ A review and conceptual framework of
automated map generalization”, International Journal of
Geographical Information System, 1988, vol.2(3), pp.229-244.

R. Brunet, “La Carte-Mod¢le et les chorémes”, Mappemonde,
vol.46, 1986, pp. 2-6.

R. Brunet, “La carte, mode d’emploi”, 1987.

R. Brunet, “Les mots de la géographie : dictionnaire critique.”
Montpellier : Reclus / La Documentation frangaise, 1990.

I. Cherni,S. Faiz, R. Laurini, R, M. Warghi, “ ChoreMAP: extracting
and displaying visual database summaries tool”, 2015, ThinkMind
eKNOW.

J.P. Cheylan, T. Libourel, C. Mende, “ Graphical Modelling for
Geographic Explanation” Spatial Information Theory A Theoretical
Basis for GIS. Proceedings, International Conference COSIT *97,
Laurel Highlands, Pennsylvania, USA, October 1997, vol 15.18,
pp. 473-483.

D. De Chiara, V. Del Fatto,R. Laurini, M. Sebillo, G. Vitiello, “A
chorem-based approach for visually analyzing spatial data”, Journal
of Visual Languages & Computing, 2011, vol. 22(3), pp.173-193.

V. Del Fatto, R. Laurini, K. Lopez, M. Sebillo, G. Vitiello, “A
chorem-based method for visualizing evolutionary scenarios”, Inf.
Visual, 2008, Vol. 7 (3)

M. Ester,H.P. Kriegel, J. Sander, X. Xu, “ A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise”, In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD '96), 1996, pp. 226—
231. AAAI Press.

T. Etherington, “ Mapping uncertain spatial object extents from
point samples using fuzzy alpha-shapes”, Journal of Spatial
Information Science, 2023 , vol. 26, pp. 1-22. arxiv.org+15

R. Ferras , “Les modeles d’organisation de I’espace”, Armand Colin,
1992.

M. F. Goodchild, “Citizens as sensors: the world of volunteered
geography”, GeoJournal, 2007, vol.69, pp.211-221.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

M.F. Goodchild, M. Yuan, T.J. Cova, “ Towards a general theory of
geographic representation in GIS”, International Journal of
Geographical Information Science, 2007,vol. 21(3), pp. 239-260.
https://doi.org/10.1080/13658810600965271.

S.  Hochreiter,J.Schmidhuber,“Long ~ Short-Term
Neural Computation, 1997, vol. 9(8), pp.
https://doi.org/10.1162/neco.1997.9.8.1735.

D. A. Keim, G. Andrienko, J.D. Fekete, C. Gorg, J. Kohlhammer,
G. Melancon, “Visual Analytics: Definition, Process, and
Challenges”, Information Visualization, Springer, 2008, pp. 154—
175.

D.A. Keim, HP. Kriegel, “ Visualization Techniques for Mining
Large Databases: A Comparison”,
IEEE Transactions on Knowledge and Data Engineering, 2002, vol.
8(6),pp.923-938.

https://doi.org/10.1109/69.553161.

M.J. Kraak, A. MacEachren, “ Visualization for exploration of
spatial data”, International Journal of Geographical Information
Science, 1999, vol. 13(4), pp. 285-287.

M.J. Kraak, “ Geovisualization illustrated”, ISPRS journal of
photogrammetry and remote sensing, 2003,vol. 57(5-6), pp.390-
399.

S. Lardon, J. Brossier, V. Piveteau, “ Territoires, modéles de
dynamique et outils de représentation”, In J. Brossier, V. Piveteau
& S. Lardon (Eds.), Territoires agricoles et développement
territorial, 2001, pp. 53-77, INRA Editions.

R. Laurini, “A conceptual framework for geographic knowledge
engineering, Journal of Visual Languages & Computing, 2014, vol.
25(1),pp. 2-19.

R. Laurini, R.M. Donolo, “Computer-Assisted Visual Reasoning for
Territorial Intelligence”, Journal of Visual Languages &
Computing, 2022, vol. 2,pp. 1-11.

P. Luo, C. Chen,S. Gao, X. Zhang, D. Majok Chol,Z.Yang, Z., & L.
Meng, “Understanding of the predictability and uncertainty in
population distributions empowered by visual analytics”,
International Journal of Geographical Information Science, 2025,
vol. 39(3), pp. 675-705.

AM. MacEachren, M.J. Kraak, “Exploratory cartographic
visualization: advancing the agenda”, Computers & Geosciences,
vol 23(4), 1997, 335-343.

AM. MacEachren, M.J. Kraak,
geovisualization”, Cartography
science, 2001, vol.28(1), pp.3-12.
11 J. MacQueen, “ Some Methods for Classification and Analysis
of Multivariate Observations”, In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, 1967,Vol.
1, pp. 281-297. University of California Press.

Memory”
1735-1780.

“Research challenges in
and geographic information

31 S.D. Nagappan, S. M. Daud, “ Machine Learning Predictors for
Sustainable Urban Planning ”, International Journal of Advanced
Computer Science and Applications, 2021, vol. 12(7), pp.772-780.
https://doi.org/10.14569/1JACSA.2021.0120787

7 D. Phan, L. Xiao,R. Yeh, P. Hanrahan, T. Winograd, “ Flow
Map Layout”, IEEE Symposium on Information Visualization
(InfoVis 2005),2005,pp.219-224.
https://doi.org/10.1109/INFVIS.2005.1532143

13 J. Sanyal, S. Zhang, G. Bhattacharya, P. Amburn, R. Moorhead,
“ A User Study to Compare Four Uncertainty Visualization Methods
for 1D and 2D Datasets”, IEEE Transactions on Visualization and
Computer Graphics, 2009, vol. 15(6), pp. 1209-1218.
https://doi.org/10.1109/TVCG.2009.114.

16 L.Wilkinson,M.Friendly, “The History of the Cluster Heat Map”,
The American Statistician, 2009, vol. 63(2), pp.179-184.
https://doi.org/10.1198/tas.2009.0033.

14 J. Zhang,Y.Zheng, D. Qi, “ Deep Spatio-Temporal Residual
Networks for Citywide Crowd Flows Prediction ”, Proceedings of
the AAAI Conference on Atrtificial Intelligence, 2017, vol. 31(1).
https://doi.org/10.1609/aaai.v31i1.11299.



https://doi.org/10.1109/CVPR.2016.574
https://doi.org/10.1007/3-540-31190-4
https://josis.org/index.php/josis/article/view/254?utm_source=chatgpt.com
https://doi.org/10.1080/13658810600965271
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/69.553161
https://doi.org/10.14569/IJACSA.2021.0120787
https://doi.org/10.1109/INFVIS.2005.1532143
https://doi.org/10.1109/TVCG.2009.114
https://doi.org/10.1198/tas.2009.0033
https://doi.org/10.1609/aaai.v31i1.11299

