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Abstract— Chorems are schematic visual constructs designed 

to synthesize and communicate the spatial structure of territories. 

While traditionally static and manually designed, recent 

developments have enabled their animation and partial automation 

using geographic data. However, their integration with artificial 

intelligence for dynamic forecasting and exploratory analysis 

remains underexplored. In this paper, we introduce the concept 

of intelligent predictive chorems, AI-driven representations that not 

only reflect current spatial patterns but also anticipate their future 

evolution. Our methodology combines deep learning for spatio-

temporal forecasting with spatial clustering and generalization 

techniques to construct interpretable geovisual summaries. These 

predictive chorems are generated automatically and displayed over 

simplified territorial backdrops, enabling both expert users and 

non-specialists to grasp complex trends in space and time. Applied 

to urban mobility data, our approach demonstrates how predictive 

chorems can serve as powerful tools for scenario exploration, 

planning, and real-time decision support. The results highlight their 

potential to bridge the gap between data-driven forecasts and 

human-centered spatial reasoning—positioning this approach as a 

promising bridge toward a new generation of intelligent geovisual 

tools. 

Keywords-component: Intelligent chorems, Deep Learning, 

Intelligent geovisualization, Automated Cartography, Geographic 

prediction. 

I. INTRODUCTION

In today’s data-rich environment, the continuous 
production of spatio-temporal information from sensors, open 
data platforms, and urban mobility systems presents both an 
opportunity and a challenge for understanding territorial 
dynamics [21, 4, 3]. The mere accumulation of raw data is 
insufficient; there is a pressing need for intelligent methods 
capable of synthesizing and revealing trends, explaining spatial 
phenomena, and most importantly, forecasting their future 
evolution [33, 7]. Traditional cartographic approaches, 
especially those involving direct projection of temporal data, 
often fall short in conveying meaningful insights, particularly 
when dealing with complex or rapidly changing environments. 
This has given rise to the field of predictive geovisualization, at 
the crossroads of artificial intelligence using deep learning, 
spatial analysis, and schematic cartography [30]. 

Among various visual synthesis tools, chorems —
schematic constructs introduced by Roger Brunet in his seminal 
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work — offer a compelling way to represent the structural 
organization of space [11]. Originally designed for static and 
manual use, chorems are increasingly being explored for 
dynamic applications, aided by automation, animation, and 
spatial analysis technologies [8, 9, 16]. However, their 
integration with predictive intelligent frameworks remains 
limited. Bridging chorems with automated forecasting 
techniques represents a novel and timely contribution toward 
creating intelligent, interpretable geovisual tools that facilitate 
spatial decision-making.  

This study introduces a new approach for generating 
predictive chorematic maps using deep learning models to 
model and forecast complex spatio-temporal processes. The 
proposed methodology combines temporal prediction with 
spatial clustering and cartographic generalization [10], 
producing visual summaries in the form of chorems that 
represent not only current spatial patterns but also their 
anticipated evolution. 

Applied to urban mobility data this method captures and 
forecasts flows over time, enabling a clearer understanding of 
both regular and emergent spatial dynamics. To the best of our 
knowledge, this represents the first attempt to integrate deep 
learning-based spatio-temporal forecasting with chorem-based 
geovisualization into a unified, automated framework. The goal 
is twofold: to provide intuitive visual representations, and to 
offer actionable insights for planners, analysts, and decision-
makers through a data-driven, yet human-interpretable, 
mapping system. 

The remainder of this paper is structured as follows. We 
first review related work in geovisualization, schematic 
cartography, and AI-based forecasting. We then present the 
core components of our methodology, followed by an 
implementation and case study. The paper concludes with a 
discussion of preliminary results, limitations, and future 
research directions. 

II. BACKGROUND AND STATE OF THE ART

In this section, we briefly discuss related works required to 

understand our research. 

A. Chorems

The concept of the chorem was introduced in the 1980s by

French geographer Roger Brunet, as part of his work within the 

RECLUS research group (Réseau d’étude des changements 
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dans les localisations et les unités spatiales). In his foundational 

work “La composition des modèles dans l’espace” [11], he 

defines chorems as schematic representations of territory, 

designed to highlight the underlying spatial structures. 

The word “chorem” derives from the Greek χώρα (chôra, 

meaning space, territory, or place and the suffix -ημα (-éma), 

which denotes a conceptual object — as in the word 

“problem”. A chorem can thus be understood as a minimal unit 

of spatial structuring, a kind of molecule of space intended to 

model territorial forms and dynamics. Originally designed as 

pedagogical and analytical tools in geography, chorems have 

gradually been used to formalize complex spatial models. 

They offer schematic representations of structures such as 

networks, polarizations, gradients, and centralities [15]. By 

reducing territorial complexity into simplified graphical forms, 

chorems facilitate the comparison of territories that exhibit 

recurring spatial structures—an approach already 

demonstrated in Roger Brunet’s foundational work [11, 15]. 
Brunet proposed a classification of chorems into seven 

categories of fundamental spatial structures — such as 

polarization, networking, gradients, centrality, and hierarchy 

— each represented by a standardized graphic form (point, 

line, circle, arrow, network, etc.). These visual forms are 

associated with territorial meanings, creating a visual grammar 

that supports the modeling, interpretation, and comparison of 

spatial systems. Chorems have been widely used in atlases, 

regional geography studies, territorial planning strategies, and 

comparative analyses [12, 20]. 

Thanks to their capacity for simplification, chorems have 

also become an effective means of visually translating 

complex geographic concepts. They provide a synthetic 

graphic language that makes spatial information accessible to 

a wide range of audiences [26]. This explanatory potential has 

made them a valuable tool for constructing operational spatial 

typologies, particularly in the fields of urban planning and 

territorial development [13]. 

Over the years, the use of chorems has expanded into various 

fields of application. In thematic cartography, chorems have 

enabled the schematization of territorial issues at multiple 

scales [11, 13, 28]. They have also been incorporated into 

comparative territorial analyses, where they serve to identify 

and contrast similar spatial logics [6]. More recently, their 

potential has been explored in the fields of geomarketing and 

territorial foresight, where they function as strategic visual 

tools for planning and decision-making support [6]. 

In recent years, much work has been carried out about 

chorems as visual summaries of geographic databases 

providing a novel definition and classification of chorems, in 

order both to standardize the construction and use of chorems, 

and to provide a useful framework computer system [17]. In 

[16] the authors enhance the role that a chorem map may play

in geographic domains, by extending the semantics associated

with it through a more expressive visual notation.

In particular, by adopting the revisited Schneiderman’s 

mantra, namely “Overview, zoom and filter, details on 

demand” [16], each allow users to acquire information about a 

single phenomenon by accessing data characterizing it from 

the underlying database. Cherni et al. [14] have proposed some 

methodological aspects to automatically extract chorems. In 

addition, [29] includes chorems as possible methods to 

represent visually geographic knowledge. Visual summaries 

based on chorems can be considered as a specific type of 

thematic map with a higher degree of generalization and 

abstraction. As previously told, generalization is a 

cartographic process but not the only existing cartographic 

process [32]. 
More recently, [8, 9] involve visualizing sensor data on a 

map with dynamic updates, often using interactive elements. 

These visualizations can highlight spatial patterns, temporal 

trends, and anomalies, and they are used in various 

applications like smart cities, environmental monitoring, and 

disaster response. 

B. Visual Analytics and Predictive Geovisualization

Visual Analytics is an interdisciplinary field situated at the 

intersection of interactive visualization, data analysis, and 

artificial intelligence. Its primary goal is to support human 

analytical reasoning through dynamic, interpretable, and 

exploratory [1,24]. In spatial contexts, Visual Analytics 

enables analysts to detect trends, anomalies, and spatial 

structures within large, complex, and multivariate datasets. 

Geovisualization aims at visually representing spatial 

phenomena for purposes of exploration, analysis, or 

communication. It becomes intelligent when it incorporates 

techniques from artificial intelligence, machine learning, or 

automated data stream processing [27]. These technologies 

enable the automatic detection of spatial and temporal patterns 

[22], the adaptive adjustment of cartographic content to user 

profiles or contexts [2], and enhanced human-computer 

interaction through the partial automation of analytical tasks. 

The integration of predictive models such as, neural networks, 

time series forecasting, or spatio-temporal models, has given 

rise to predictive visualization, which allows for the 

cartographic display of future projections (e.g., traffic, 

pollution, urban dynamics), the combination of forecasts and 

uncertainty in interactive displays [37] and support for real-

time decision-making in contexts such as smart cities or crisis 

management. The convergence of artificial intelligence, 

visualization, and GIS paves the way for a new generation of 

intelligent and predictive geovisualization tools, which 

leverage deep learning models (e.g., LSTM, GNN) to 

anticipate spatial dynamics [39], generate adaptive and self-

explanatory smart maps, and empower decision-makers with 

proactive, interpretable, and dynamic spatial analysis 

environments. By combining exploratory analysis, predictive 

modeling, and interactive interfaces, visual analytics applied 

to geography offers powerful perspectives for steering 

complex territorial systems and facilitating insight-driven 
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decisions [35, 31]. In our work, we build on this philosophy by 

proposing a geovisual framework based on predictive visual 

summaries, aiming to make forecasting results more 

accessible, interpretable, and actionable for decision-makers 

and urban planners. 

C. Research overview

Despite significant advances in spatio-temporal modeling 

and geovisualization, existing approaches still face important 

limitations when it comes to interpreting and communicating 

complex spatial dynamics. Traditional GIS-based tools and 

data-driven dashboards often rely on dense, map-heavy 

visualizations that are not always readable by non-experts and 

tend to lack semantic abstraction. Moreover, while deep 

learning models have improved the accuracy of spatio-

temporal forecasting, their integration into visual reasoning 

workflows remains limited. These models are frequently seen 

as black boxes, providing little intuitive or visual feedback to 

support human decision-making. 

In the field of cartographic schematization, chorems have 

proven effective for representing territorial structures through 

a synthetic and interpretable visual grammar. However, they 

have rarely been combined with real-time data or AI-based 

forecasting, remaining mostly static and manually designed. 

Consequently, there is a lack of approaches that can both 

predict spatial dynamics and represent them through abstract 

yet intelligible forms, especially for use in planning, crisis 

management, or urban foresight. 

In this paper, we propose a novel framework for Predictive 

Chorem-Based Geovisualization, which aims to bridge this 

gap. By combining LSTM-based deep learning [23] for spatio-

temporal forecasting with chorematic schematization 

techniques, we introduce a method that can automatically 

generate interpretable visual summaries of future spatial 

patterns. This contribution positions itself at the intersection of 

AI-driven prediction, geographic abstraction, and interactive 

geovisual tools, offering a new pathway for human-centered 

spatial intelligence. 

III. METHODOLOGY : CHOREMS AND ARTIFICIAL8

INTELLIGENCE – TOWARDS A NEW PREDICTIVE

GEOVISUALIZATION 

In this section, we present how the challenges outlined 

above are addressed through our proposed methodology. Our 

approach is structured as a multi-step pipeline designed to 

transform raw spatio-temporal data streams into interpretable 

and predictive chorem-based visualizations. The 

methodological process unfolds as follows: 

1 https://opendata.paris.fr/pages/home/ 

A. Case Study: Urban Mobility Forecasting

We applied our predictive geovisualization pipeline to a 

real-world dataset of bicycle flow measurements collected 

across the city of Paris1. The dataset spans a full 12-month 

period, from June 2023 to May 2024, and was obtained from a 

network of urban sensors managed by the city’s open data 

platform. These sensors, installed at various locations across 

the Paris metropolitan area, continuously record the number of 

bicycles passing by at hourly intervals (Figure 2).  

Figure 1.  Traditional dot map of the current state of bicycle flows in Paris

B. Overview of the Architecture

The proposed approach architecture is organized as a 

modular processing pipeline designed to transform raw spatio-

temporal data into interpretable predictive chorems. As 

illustrated in the global workflow diagram (Figure 2).  

Figure 2.  The proposed approach structure.  

The pipeline is composed of five core stages: 

Spatial Data 

Streams

Preprocessing

> Selection of
symboles

> Visual coding
(colors..)

> Semiotic

Spatio-tomporel 

prediction

LSTM

Counters

Clustering (K-

Means, DBSCAN)

Chorem

Generation
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(1) Data acquisition and preprocessing, where spatio-

temporal data from urban sensors (e.g., bicycle

counters, weather APIs) are collected, cleaned, and

structured;

(2) Forecasting future mobility flows at an hourly

resolution based on counting data collected from

urban sensors, using Long Short-Term Memory

(LSTM) neural networks [27];

(3) Clustering, where unsupervised algorithms K-

Means2 [34] and DBSCAN (Density-Based Spatial

Clustering of Applications with Noise) [18], are

applied to group sensors with similar behavioral or

spatial characteristics;

(4) Generalization, in which territorial structures are

abstracted and simplified through geometric and

semantic generalization; and finally,

(5) Predictive Chorem Generation, where these

stylized patterns are encoded into visual elements

based on chorematic principles to support intuitive

geographic interpretation and decision-making.

C. Spatio-Temporal Forecasting with LSTM

To anticipate future patterns of urban bicycle mobility, we
implemented a Long Short-Term Memory (LSTM) neural 
network tailored for spatio-temporal sequence forecasting. The 
forecasting pipeline begins with the preprocessing of time 
series data collected from urban counting stations. Daily counts 
are aggregated, missing values interpolated, and all features 
standardized. Temporal metadata, such as the day of the week, 
holidays, and season indicators, are encoded and concatenated 
as auxiliary inputs. 

The architecture of the model consists of one or more 

stacked LSTM layers, followed by a fully connected dense 

output layer. Each input sequence corresponds to a sliding 

window of historical observations, typically spanning seven 

consecutive days (seq_length = 7), which are used to 

predict the value on the eighth day. In its current configuration, 

the model performs short-term next-step prediction, producing 

a single output point for each input window (Figure 3). 

Figure 3.  LSTM-based spatio-temporal forecasting pipeline.

This strategy emphasizes immediate trend detection rather 
than long-term forecasting. Extending the system to multi-step 
forecasting (e.g., for predicting bicycle flows over a full week 
or month) remains an important direction for future work. 

To ensure robust generalization, we applied time-aware 
cross-validation strategies, such as training on several months 
and testing on unseen time intervals. The model’s accuracy is 
assessed using evaluation metrics including Mean Absolute 
Error (MAE) and Root Mean Square Error (RMSE). Model 
hyperparameters, such as the number of layers, hidden units, 
learning rate, and dropout rate, are optimized through grid 
search, and early stopping is employed to prevent overfitting. 

The LSTM outputs are then forwarded to the clustering 
module, where predicted flow values are spatially grouped and 
transformed into symbolic structures via chorematic 
abstraction. This enables the synthesis of predictive maps that 
not only anticipate future mobility intensities but also encode 
them in an interpretable and spatially structured way. 

D. Spatial Generalization and Chorem Generation

Once the spatio-temporal clusters are defined, we proceed
to spatial generalization in order to produce stylized chorem-
like regions. This involves several geometric processing steps: 

First, a densification step is applied, using small jitter or 
random displacement to avoid perfect overlaps of clustered 
points. Then, buffer zones are created around each group of 
sensors to approximate the spatial influence of each cluster. 
These buffers are merged using topological union operations to 
generate contiguous, interpretable regions. 

To construct smooth and coherent outlines, we apply Alpha 
Shape algorithms [19] to extract non-convex hulls around 
grouped points, followed by geometric simplification to reduce 
visual noise while preserving spatial structure. The result is a 
set of chorematic zones — symbolic areas that reflect the spatial 
organization of predicted flows. 

Finally, we enrich each zone with directional arrows whose 
orientation and thickness encode the predicted flow direction 
and intensity. These visual elements are grounded in chorem 
semiotics and enable a schematic but meaningful depiction of 
territorial dynamics.  

IV. PRELIMINARY RESULTS AND DISCUSSION

This section presents the preliminary results of our 
proposed predictive chorem-based geovisualization 
framework. The analysis focuses on the effectiveness of 
LSTM-based forecasting, the spatial clustering outputs, and the 
visual synthesis of predictive chorems. 

We first trained the LSTM model on 80% of the available 
data, covering 12 months of hourly bike traffic collected from 
urban sensors in Paris. The remaining 20% was used for testing. 
The model successfully captured temporal trends, particularly 
weekday/weekend variations and seasonal fluctuations. The 
predicted values were then classified into three traffic flow 
levels (low, medium, high) and aggregated by spatial clusters 
obtained using DBSCAN and K-Means algorithms. 

From a qualitative standpoint, the generated maps 
highlighted recurrent spatial structures such as radial 
centralities and flow corridors. These features were more 
difficult to interpret in dense heatmaps. However, several 
limitations remain: the precision of the predictions depends 
strongly on the temporal granularity of the training data, and the 

Input Sequences
LSTM Layers

(with dropout, etc.)

Dense 

Output Layer

( e.g 48h time 

window )

Context & time 

features,calendar..

( e.g next 12h )
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current visuals lack real-time interactivity or explicit 
uncertainty representation. The performance of the LSTM 
model on the test set is in (Table 1). 

TABLE I. THE PERFORMANCE OF THE LSTM MODEL 

Metrics Values 

RMSE 12.4 

MAE 8.7 

MAPE 11.3% 

Accuracy (Predicted class) 84.6% 

To illustrate the outcomes of our predictive pipeline, we 
developed a chorem-based predictive map of bicycle flows in 
Paris (Figure 4).  

Figure 4.  The predictive chorematic map of bicycle flows in Paris 

This geovisualization integrates three types of chorems, 
each tailored for practical use in urban analysis and territorial 
planning: 

• Geographic chorems, depicted through points, lines,

and polygons, represent the spatial structure of the

city and the location of counting stations;

• Phenomenological chorems, in the form of colored

zoning areas and directional arrows, convey the

intensity and dominant direction of predicted bicycle

flows;

• Annotation chorems highlight strategic zones,

anomalies, or noteworthy patterns revealed through

data analysis.

Based on the predicted bicycle flow values, counting 
stations were classified into three categories (low, medium, and 
high intensity). These categories were then spatialized into 
zones that abstract the complexity of urban space and reveal 
structural patterns within the cycling network. Arrows placed 
at the centroid of each zone indicate the dominant flow 
direction and relative intensity, while the size of the blue circles 
reflects the density of counters in each area. 

Compared to a traditional dot map (Figure 1), this chorem-
based representation offers several major advantages. It 
simplifies interpretation by aggregating individual stations into 
coherent zones, highlights strong and weak spatial polarities, 

and structures the map according to functional logic. This 
schematic approach enables rapid identification of high-flow 
corridors and areas where infrastructure adjustments may be 
necessary. 

From a semiological standpoint, the map design draws on 
the principles of graphic semiology formulated by [5] using 
color, size, shape, and orientation to encode variables such as 
flow intensity, direction, and temporal dynamics. This 
methodological choice ensures a scalable, interpretable, and 
synthesized representation of complex spatio-temporal 
phenomena — moving beyond traditional descriptive mapping. 

Our approach stands apart from conventional 
representations like heatmaps [38], glyph-based maps [25] or 
vector-based flow diagrams [36] which often produce dense, 
hard-to-read visuals that hinder structural understanding. In 
contrast, predictive chorems provide a schematic and 
generalized perspective, focused on dominant spatial structures 
such as centralities, gradients, and polarizations, thus 
supporting comparative spatial analysis. 

When combined with time-series forecasting models such 
as LSTMs, chorems become an effective tool for visual 
forecasting, offering actionable insights for urban planners and 
decision-makers in dynamic urban contexts. These preliminary 
results underline the strong potential of predictive chorems as a 
synthetic, intelligible, and decision-oriented geovisualization 
method for modeling urban mobility patterns. 

V. CONCLUSION AND PERSPECTIVES

This work introduces an innovative approach to predictive 
geovisualization by combining deep learning techniques with 
spatial abstraction through predictive chorems. By integrating 
spatio-temporal forecasting using LSTM neural networks, data 
clustering, and schematic synthesis, we demonstrated how raw 
data from urban sensors can be transformed into intelligible and 
structured maps that support spatial reasoning and strategic 
planning. 

While promising, the current results remain preliminary. 
Future improvements will focus on enhancing the predictive 
accuracy of the models, enriching the input data with contextual 
variables (such as weather or calendar data), and increasing 
both the readability and interactivity of the generated maps. 
These developments are crucial to reinforce the operational 
relevance of predictive chorems in real-world decision-making 
scenarios. 

The integration of more advanced AI models, such as 
spatio-temporal transformers or graph neural networks 
(GNNs), presents another promising avenue to improve both 
the accuracy of forecasts and the expressiveness of spatial 
representations. 

In summary, this research lays the groundwork for a new 
generation of predictive, structured, and user-centered 
geovisualization at the intersection of artificial intelligence, 
cartography, and decision support. 
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